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Content and aim: review of possible collaborations

Data analysis:

Longitudinal analysis Proteome
Network analysis Epigenome

Deep learning analysis Images



Transcriptional regulation

» Basic paradigm of molecular biology. Kind of a " Newton's
law” for living systems:

activator

OmIC Gene transcription 4 mBNA  translation Protein

Information: p1
Small

review on

molecular

biology

Epigenetics and MicroRNAs

JODY C. CHUANG, AND PETER A. JONES

Figure 3. CpG islands normally remain unmethylated, whereas the sporadic
CpG sites located in the rest of the genome often are methylated. With aging,
there 1s a gradual reversal of this phenomenon. During carcinogenesis, this
change 1s much more dramatic, leading to a global hypomethylation and

P e rSO n al i Se d m ed i Ci n e hypermethylation of CpG islands. The results are chromosomal instability and

silencing of some important tumor-suppressor genes.
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The Human Body as a Super
Network: Digital Methods to Analyze
the Propagation of Aging

Harry J. Whitwell!, Maria Giulia Bacalini?, Oleg Blyuss®*, Shangbin Chen?,
Paolo Garagnani®, Susan Yu Gordleeva’, Sarika Jalan®®, Mikhail lvanchenko °,
Oleg Kanakov’, Valentina Kustikova™, Ines P. Marifio ', losif Meyerov°,
Ekkehard Uliner'?, Claudio Franceschi”°* and Alexey Zaikin*1%13*

V. Samborska et al. MAMMALIAN BRAIN As A NETWORK...
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MAMMALIAN BRAIN As A NETWORK OF NETWORKS

Veronika Samborska !, Susanna Gordleeva ?, Ekkehard Ullner 3, Albina Lebedeva *, Viktor Kazantsev 2, Mikhail

TIvanchenko * and Alexey Zaikin **



Search for Network, Longitudinal and Deep Learning

4 4 Biorrirkers 4 4

Multi-omic data: Genetic, Epigenetic and Proteomic

Concentration of Biomarker

Stage Il

Time (yars)

10 year survival

Thanks Harry for picture



Longitudinal and
deep learning
markers

03



a First-Line Screen for Ovarian Cancer

e Ovarian cancer remains the leading cause of death from gynecological
cancer among women and accounts for 3% of all female deaths from cancer,

corresponding to annual deaths of around 4,100 in the United Kingdom,
42,700 1n Europe, 22,280 1n the United States and 152,000 worldwide.

 Most women are diagnosed 1n advanced stage (Stage III-1V) with reported
S-year survival rates of 19% (Stage III) and 3% (Stage IV) respectively. The
higher survival rates of 70%—90% 1n earlier stage (Stage I-1I) disease has
driven international screening efforts to detect the disease earlier.

* In the United Kingdom Collaborative Trial of Ovarian Cancer Screening
(UKCTOCS), women 1n the multimodal (MMS) arm had a serum CA125
test (first-line), with those at increased risk, having repeat CA125/ultrasound

(second-line test). CA125 was interpreted using the "Risk of Ovarian Cancer
Algorithm" (ROCA).

e Experimental Design: 50,083 post-menopausal women who attended
346,806 MMS screens were randomly split into training and validation sets,
following stratification into cases (ovarian/tubal/peritoneal cancers) and
controls.



[ Longitudinal analysis of biomarkers j 3 I 02-)
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Figure 1. Transformed CA125 Values (Y) From Five Controls (a) and
Five Cases (b) in the U.K. Screening Trial {Jacobs et al. 1993).
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Change-point of multiple biomarkers in women with ovarian cancer @mmm

Inés P. Marifio®>*', Oleg Blyuss>!, Andy Ryan”, Aleksandra Gentry-Maharaj®,
John F. Timms°, Anne Dawnay ¢, Jatinderpal Kalsi®, Ian Jacobs >4, Usha Menon "2,

.y = U,E
MEKE},I' Zaikin Biomedical Signal Processing and Control 33 (2017) 169-177



Longitudinal analysis of biomarkers

Method of Mean Trends

Biomarker MMD (Method of the Mean Derivative):
A Principal idea:

Multiple Logistic
Regression

Growth | Growth || Growth || Growth
| Y m—
ij Agelast_(Agei;Agej)
If one point only
- classify at 98%
Age spec

Comparison of longitudinal CA125 algorithms as a first line screen

for ovarian cancer in the general population

Oleg Blyuss', Matthew Burnell', Andy Ryan', Aleksandra Gentry-Maharaj', Inés P.
Marifio®?, Jatinderpal Kalsi', Ranjit Manchanda'®, John F. Timms', Mahesh Parmar3,

Steven J. Skates?, lan Jacobs' 58, Alexey Zaikin'7", and Usha Menon'",

Indicators used (for every i-th patient):

* Last measurement
* Trend 1 (Mean derivative)
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* Key papers:

* finding longitudinal oncomarkers- License obtained!

Published OnlineFirst July 3, 2018; DOI: 10.1158/1078-0432.CCR-18-0208

Precision Medicine and Imaging

Comparison of Longitudinal CA125 Algorithms as
a First-Line Screen for Ovarian Cancer in the

General Population

Oleg Blyuss', Matthew Burnell', Andy Ryan', Aleksandra Gentry-Maharaj',
Inés P. Marino"?, Jatinderpal Kalsi', Ranjit Manchanda"?, John F. Timms/,

Clinical
Cancer
Research

®

Check for
updates

Mahesh Parmar?, Steven J. Skates>, lan Jacobs"®’, Alexey Zaikin'®, and Usha Menon'

4726 Clin Cancer Res; 24(19) October 1, 2018
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Performance characteristics of CA125 interpreted using MMT, threshold rules, econdary analysis ROC curves for CA125 interpreted using MMT, threshold rules
PEB and ROCA for detection of iEOC/PPC cases. Circle points give particular nd PEB for detection of iEOC/PPC cases. Circle points on the ROC curves give

values of sensitivity and specificity provided by MMT and PEB corresponding to articular values of sensitivity and specificity provided by MMT and PEB

cutoff values obtained from the training set (MMT and PEB), CA125 using 22 and orresponding to cutoff values obtained from the training set (MMT and PEB).
30 U/mL cutoff values and ROCA as reported in ref. (6). Abbreviations: PEB, bbreviations: PEB, parametric empirical Bayes; MMT, method of mean trends;

parametric empirical Bayes; MMT, method of mean trends; CA125, cancer

antigen 125; AUC, area under roc-curve.

A125, cancer antigen 125; AUC, area under roc-curve.
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Deep oncomarkers ) Biomedical Signal Processing and Control
journal homepage: www.elsevier.com/locate/bspc
Deep Learning Neural h
Networks Recurrent Neural
Networks with GRU y A quantitative performance study of two automatic methods for the R)
diagnosis of ovarian cancer e
Manuel A. Vazquez "1, Inés P. Marifio %', Oleg Blyuss®¢, Andy Ryan¢,
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Fig 2. Network architecture for a single biomarker.

Development of neural network architecture for the early diagnosis
analysis of oncomarker data in womens cancer

V. Cherepanova et al.
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Work in progress!
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Constructing network

biomarkers

Scientific American
Vol. 296. No. 3 (MARCH 2007), pp. 50-57 (8 pages)

MAPPING THE

CANCER
GENOME

Pinpointing the genes involved in cancer will help chart a new
course across the complex landscape of human malignancies

By Francis S. Collins and Anna D. Barker

“One cfiﬁ:icuﬁy n inte@oreu’ng this data for ofeﬁning c[inica(@ useﬁx[ information is

that mu[n’]o[e cﬁﬁerent cﬁanges may be responsiﬁfe for the onset @( a disease, as

exemyﬁ’ﬁeaf By the eﬁ(orts @( The Cancer Genome Atlas project”

* Network biomarkers for methylation: using correlations between intra-gene

profiles

* Parenclitical networks: constructing networks when links are unknown



[ DNA Methylation Analysis

Misha Ivanchenko, Zaikin

j OPEN @ ACCESS Freely available online @ PLOS | ONE

Corruption of the Intra-Gene DNA Methylation
Architecture Is a Hallmark of Cancer

Thomas E. Bartlett', Alexey Zaikin? Sofia C. Olhede'?, James West'*, Andrew E. Teschendorff?,
Martin Widschwendter®*
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OPEN @ ACCESS Freely available online @ PLOS | ONE

DNA Methylation

A DNA Methylation Network Interaction Measure, and
Detection of Network Oncomarkers

Thomas E. Bartlett'**, Sofia C. Olhede®?3, Alexey Zaikin'’

.
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Methylation
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= High network interaction co-ordinaledness, P = 1
= Low network interaction co-ordinatedness, Py = 0.07
-  Mean healthy methylation profile : —
Healthy population profiles Genomic position
Q Network node
= = Metwork edge

Figure 1. The DNA methylation network interaction measure. A combination of the variation of the healthy methylation profiles in regions (a)
and (b) of gene X explains well/is well-explained by a combination of the variation of the healthy methylation profiles in regions (c) and (d) of gene Y.
The green cancer sample varies by a large amount about the mean methylation profile and in a typical way in these regions in both genes. Hence, the
green sample corresponds to & high level of network interaction co-ordinatedness, as measured by the DMA methylation network interaction
measure, gy = 1. The variation in the other regions of these genes do not well-explain each other, and so the red sample, which varies by a large
amount in these other regions and varies less and in an atypical way in regions (a)-(d), comesponds to a low level of network interaction co-
ordinatedness, gy =0.07. Genes X and Y are likely to have different numbers of methylation measurement locations (i.e., variables X and ¥ are of
different dimension). The ordering of the measurement locations has no influence on the calculation of g, as long as the ordering is consistent across
samples.
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(a) (b)
A DNA Methylation Network Interaction Measure, and
Detection of Network Oncomarkers
Thomas E. Bartlett'**, Sofia C. Olhede?®?, Alexey Zaikin'
(d) i ;

(e) (f) E

Figure 3. Smaller significant network modules: network diagrams. Network edges displayed in green and red indicate positive and negative
hazard ratios, respectively, for the DNAm network correlation measure corresponding to that interaction; these correspond, respectively, to an




OPEN (@ ACCESS Freely available online @ PLOS | ONE

DNA Methylation Analysis j

A DNA Methylation Network Interaction Measure, and
Detection of Network Oncomarkers

Thomas E. Bartlett'-**, Sofia C. Olhede?®?, Alexey Zaikin'

Figure 4. Larger significant subnetworks: network diagrams. Network edges displayed in green and red indicate positive and negative
hazard ratios, respectively, for the DNAm network correlation measure corresponding to that interaction; these correspond, respectively, to an
increase and decrease in ‘network interaction co-ordinatedness’ for worse disease prognosis. (a) the KIRC large subnetwork. (b} the LUAD large
subnetwork. Further details about the corresponding network nodes (genes) for the top 5% of the degree distribution and top 25 significantly
enriched gene sets appear in tables 55-6.

How to build a network if links are unknown?
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Research Paper
Parenclitic networks for predicting ovarian cancer

Harry J. Whitwell?, Oleg Blyuss?, Usha Menon?, John F. Timms® and Alexey Zaikin**

A B
P =0.999 P=0.198

Network oncomarkers j
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RESEARCH ARTICLE

Parenclitic Network Analysis of Methylation
Data for Cancer Identification

Alexander Karsakov', Thomas Bartlett?, Artem Ryblov', losif Meyerov®,
Mikhail lvanchenko', Alexey Zaikin'?*
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Fig 3. Typical examples of parenclictic networks constructed from gene methylation profiles for cancer (left) and
normal (right) samples from BRCA data. Only a 1000 of the strongest edges and their incident nodes are shown. Note the

pronounced modular structure for the cancer network.
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Research Paper
Parenclitic networks for predicting ovarian cancer

Harry J. Whitwell?, Oleg Blyuss?, Usha Menon?, John F. Timms® and Alexey Zaikin**
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Analyte 2

Parenclitic Network Construction (SVM approach as an example)
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Examples of problems that can be solved using networks characteristics

Case/Control Classification (e.g. Disease/Health)
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Detection of discrete state between Case and Control (e.g. Stage of Disease)
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Detection of continuous state between Case and Control (e.g. time to Diagnosis)
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AGE RESIDUALS ]
: Age-related changes in the network topology of DNA
1.150+05 1 -| methylation probes: a parenclitic network approach
. ¢| to afamily-based cohort of patients with Down
1.14e+05 4 g Syndrome
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1. M-Control Network — DSM group is Control group, DS group is Case group, DSS group is Zest group;

2. S-Control Network — DSS group is Control group, DS group is Case group, DSM group is Test group;

3. AGE-Control Network — DSS group is Control group, DSM group is Case group, DS group is 7est group;
4. DS-Control Network — DS group is Control group, DSS and DSM groups sre Case group.
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Dynamic predictive model for baseline early detection and follow- up re-

evaluation of the risk of prostate cancer progression on active surveillance
(PROGRESS Prostate)

Prostate cancer (PCa) 1s the second commonest male cancer worldwide, with 43% of patients being offered active
surveillance (AS) as an alternative to radical treatment. However, a five-year dropout rate of 44% with pathological upgrading
of 27% of re-biopsied cases within the first year of AS highlight the lack of robust risk-stratification models enabling both
early detection and continuous re-evaluation of individualised progressive potential of PCa. With this in mind, here we
present a CRUK ACED collaboration that seeks to develop a personalised dynamic predictive model able to estimate the risk
of PCa progression throughout the whole AS continuum starting from the initial appointment. To develop the model, we will
use a range of novel high-performance modelling methodologies utilising serial biomarker measurements, which we have
previously developed and trialed as part of UKCTOCS trial.

Deep Learning with Recurrent Artificial Neural Networks. We have recently shown that one of the most widely
used deep learning techniques, recurrent neural networks (RNN), 1s capable of predicting the risk of developing ovarian
cancer based on measurements of serial CA125. (26) To use RNN as part of this project, we have developed a neural
network architecture based on state- of-the-art Al findings and using Long Short Term Memory RNNs, especially RNNs
with Gated Recurrent Unit, and shown further improvement of cancer early detection (unpublished data). In the current
project, we will further adapt this architecture for a further improvement of a risk- stratification model, potentially
integrating findings from the MMT and BCP approaches with the RNN.
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Neythen Treloar
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Main idea:
Spatial pattern can be used for signal integration and computation
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Main idea:
Spatial pattern can be used for signal integration and computation
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Network trained with these constraints using regularization to encourage sparsity.

XNOR

* Network output: enough for digital
classification .

* The more constraints we can overcome the
better it will perform

4



Weights extracted from trained network and evolutionary algorithm used to find node position:

. Target:
* This assumes we have two | (3 5815872 3.7029088)
AHLs 0f @ T

[6.8024187, 6.783618 ]]

. AHL1 AHL2 o aas [7.0231166,5.7998238]

=) =@

. - o Solution:
. - [[3.6642652], [3.6659336],
R ® [6.80611 ), [6.792463]]

[7.0273304], [5.795528 ]

Network trained Weights recalculated
XNOR . : "
with constraints from positions

-

Diffusion system




Main open question:
longitudinal data analysis of multiplex
networks with different space and time scales
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